skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Summers-Stay, Douglas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ord embeddings are commonly used to measure word-level semantic similarity in text, especially in direct word- to-word comparisons. However, the relationships between words in the embedding space are often viewed as approximately linear and concepts comprised of multiple words are a sort of linear combination. In this paper, we demonstrate that this is not generally true and show how the relationships can be better captured by leveraging the topology of the embedding space. We propose a technique for directly computing new vectors representing multiple words in a way that naturally combines them into a new, more consistent space where distance better correlates to similarity. We show that this technique works well for natural language, even when it comprises multiple words, on a simple task derived from WordNet synset descriptions and examples of words. Thus, the generated vectors better represent complex concepts in the word embedding space. 
    more » « less